The products of HEE are primarily

hydrogen and heat

A slow process of oxidation occurs deep underground. The high thermal mass of the rock, and the presence of water, make it easy to control the rate of heating, and quench the process if need be.

A production well is then operated, using dynamic down-hole devices to selectively harvest the trapped pool of hydrogen gas.

Residual heat can also be harvested as steam for generating electricity. Other products may also be captured in smaller amounts – for example helium, sweet gas, syngas, and lower-grade thermal energy.

The wellhead becomes a multi-purpose facility or ‘Trove‘, for producing and injecting oxygen-enhanced air, and for extracting and processing hydrogen, heat and other products for a wide variety of markets.

Frequently Asked Questions about



In simple terms, advanced technology allows for a two-step process: i) heating the reservoir to create free hydrogen, and ii) extracting pure hydrogen gas, heat and other valuables.

In practice, a functioning facility or ‘Trove’ will include include a series of connected processes, beginning with the production of oxygen-enriched air and ending with storage and distribution of hydrogen.

The most innovative part of these Trove technologies is the patented combination of heating reservoirs with Oxinjection wells and harvesting the hydrogen with Hygeneration wells. Both types of wells adapt existing equipment to new purpose.


Oxygen-enhanced air is produced at the wellhead, and then injected deep into the reservoir through an ‘Oxinjection Well‘. Gases, coke and heavier hydrocarbons are oxidized in place (a process known as In-Situ Combustion). Targeted portions of the reservoir become very warm. Where necessary, the temperatures are heightened further through radio frequency emissions.

Eventually, oxidation temperatures exceed 500°C. This extreme heat causes the nearby hydrocarbons, and any surrounding water molecules, to break apart. Both the hydrocarbons and the H2O become a temporary source of free hydrogen gas. These molecular splitting processes are referred to as thermolysis, gas reforming and water-gas shift. They have been used in commercial industrial processes to generate hydrogen for more than 100 years. In HEE these processes are controlled through the timing and pattern of oxygen injection and external heating.


After creating free hydrogen, one or more Hygeneration wells extracts the elemental hydrogen, using Proton’s patented Hygenerator. The Hygenerator is a dynamic down-hole device that uses feedback from inside the wells to intelligently locate hydrogen. A selective membrane inside the Hygenerator filters the gases, and a pump moves pure hydrogen gas up to the wellhead.

The Hygenerator is an adaptation of hydrogen-selective filters used in steam-methane reformers (SMRs). Over 95% of the world’s hydrogen comes from splitting natural gas, above ground, in SMRs. For a Trove to work, the Hygenerator membrane must be encased in a robust cartridge system that can be placed into a bendy well, and function for long periods despite high pressures and temperature.

Hy-generation wells are sometimes referred to as ‘mother wells’ since they have potential to produce a stream of other valuable resources: steam for electricity generation, helium gas, syngas, and low-grade thermal energy. Everything else, including carbon, can be left in the ground.

A small part of the energy extracted from the reservoir – as hydrogen, heat or syngas – may be used directly at the wellhead to produce the oxygen-enhanced air, and to operate the pumps.

If syngas is harvested, HEE may release small quantities of carbon  into the atmosphere, or recirculate CO2 into the reservoir, as a way to relieve pressure.

In most cases HEE will be completely clean and green, producing pure hydrogen continuously and in massive quantities.


Light and heavy oil, gas reservoirs and coal beds all appear to be suitable for HEE. Even depleted or abandoned reservoirs retain large quantities of hydrocarbons, and the potential remains high.

In broad terms, about 70% of oil remains in the ground after production, because it is inaccessible or uneconomic to recover. In natural gas reserves about 20% is left behind. (for more detail, see Wiki article on petroleum extraction efficiencies: en.wikipedia.org/wiki/Extraction_of_petroleum ).

Many water-logged reservoirs are especially suitable for HEE, because water actually contributes to hydrogen generation.

For many abandoned or declining reservoirs, HEE becomes a ‘phoenix’ solution, reviving local industry and producing unexpected value from sunk costs.

The transition to HEE can be rapid since so much infrastructure is in place, and so many reservoirs are surveyed and accessible.

Standard Reservoir Recovery Rates are less than 40%, so HEE can work everywhere.

Primary recovery of oil depends on existing water and/or gas pressure in the reservoir to produce it. Typically only 5% to 15% of the oil in place is recovered. Using standard methods of extraction, oil and gas recovery is typically around 30%. Secondary recovery is resorted to when natural pressure is no longer sufficient to drive oil up the wellbore. It involves injecting water or gas into the reservoir to boost reservoir pressure. That gets the recovery factor up to 35% to 45%.

Tertiary recovery is where you go when secondary recovery falters. It involves reducing the viscosity of the oil by heating it with steam or by setting some of the oil on fire (called fire flooding). Injecting CO2 will also increase viscosity but is less used. These methods can increase the recovery factor to between 40% to 60%. However, not all reservoirs are suitable for secondary or tertiary recovery, and the cost of secondary or tertiary recovery is not always justified, so the average recovery rate worldwide is quite low, ranging from 20% and 40%.

Heavy oil is an extremely rich source of carbon and hydrogen. Globally, the resource base for heavy oil is several times larger than that of conventional oil. Thus, if HEE can yield clean energy – with virtually zero GHG emissions – from heavy oil reserves, the impact is significant on both the world economy and environment. The ideal target for HEE in heavy oil reservoirs would be reservoirs with greater than 40% water saturation. At present, these reservoirs are considered inaccessible. But for HEE, the high water saturation becomes an advantage.


The hydrogen produced from HEE can be used for:

  • power generation – fuel cells, oxidation of hydrogen for steam for use in turbines
  • transportation fuel – in hydrogen powered vehicles, or mixed with existing fuels
  • feedstock for the chemicals industry – heavy oil upgrading, ammonia, methanol, fertilizer production

The high temperature waste heat from HEE production can also serve multiple markets. High temperature fluids, or steam, can be used to power generators and produce electricity. Lower temperatures are also valuable, for industrial processes and space heating.

For more information on short and mid-term markets for hydrogen see the INVESTORS page.


HEE is a fast solution to climate change risks, partly because it is a clean fossil fuel, and partly because the new technology is rapidly implemented, taking full advantage of existing infrastructure and expertise. Thus HEE is the antidote to society’s growing dependence on oil sands and shale gas, and a long-term sustainable solution to energy supply.

HEE is also a solution to other pressing problems. More than 80% of all air pollution comes from hydrocarbon oxidation. On average, 18,000 people die each day from poor air quality in cities.  Thus HEE is the antidote to urban air quality problems, acid rain & smog.

HEE should enhance energy security for most regions, and calm the geopolitics of oil.  Many regions can regenerate reservoirs and produce hydrogen locally.  Unlike electricity, hydrogen can be transported long distances with only minor losses.

HEE promises to provide a stable, affordable supply of hydrogen, and this allows many other renewable but less reliable energy sources to benefit from universal storage and distribution facilities.  It opens the door to a more renewable, distributed and adaptable energy ecology.The distribution systems for HEE can be used to piggy-back  all kinds of emerging renewable and green energy, including l wind and solar.  All surpluses can be converted to hydrogen for storage and distribution. In this way, HEE underlies a new ‘industrial ecology’ that begins at the wellhead, and branches throughout the region.

HEE is surprising benefit for the increasing number of regions that suffer from poor quality and insufficient water supply.  Every liter of hydrogen used for energy produces 9 litres of pure water.


Hydrocarbon reservoirs are located all over the world. In order to accelerate research and adaptation, our initial field demonstrations will be located close to Regional Centres of Excellence. For best economics within each regions we are proposing to start with reservoirs that are:

  1. Close to infrastructure and expertise
  2. Easily accessed by urban regions with high energy costs
  3. Water saturated, devalued, depleted or abandoned (and thus available at very low cost)
  4. Near to industries that can benefit from high volumes of hydrogen, including fertilizer plants and refinery upgraders


Economic modelling suggests that HEE can produce hydrogen in high volumes at less than $0.65 USA per kg initially, with costs dropping below $.50 USD once systems are optimized.

This is very competitive, since almost all hydrogen is currently produced by Steam Methane Reformers at a cost of $2 to $3 USD.  – much less than conventional processes, and far below market prices ($8 to $10 per kg).

The economics are influenced by multiple factors, and costs may change substantially once production volumes are generated. The production rates are the key driver of the economics. Production rates are, in turn, directly determined by the extent to which the HEE system can adapt to different reservoir types.

Two secondary variables are the capital expenditure (CAPEX) required to implement an HEE systems, and the operating expenditures (OPEX) per thousand standard cubic feet (MSCF).

Economic potential has been modelled on per well basis, with simulated production rates and data for CAPEX and OPEX from comparable operations. First year costs have been calculated, along with longer-term costs incorporating economies of scale associated with full commercial development.  Individual wells are projected to produce over a lifetime of 7 to 10 years.

The economic model is summarized here: Investors Info


The first evidence supporting HEE was the outcome of the Marguerite Lake Cyclic Steam and Air Injection pilot, conducted in the Clear water Formation of Canadian oil sands, in the 1980s.

This pilot study was designed to maximize oil production using a combination of steam and In Situ Combustion. From an oil production perspective, the results were not considered successful. Unexpectedly, the pilot produced a gas stream at the surface that consistently contained up to 20% hydrogen.

Hydrogen production was not the target of the experiment, and at the time the Hydrogen production was deemed insignificant. However the implications were significant. The Marguerite Lake pilot is now recognized to have demonstrated an alternative energy technology.

The key finding was that In Situ Combustion reactions within the reservoir can bring to the surface a gas stream containing high concentrations of hydrogen, along with methane, and carbon oxides.

In 2014 Professor Ian Gates and research engineer Jackie Wang noticed that the Marguerite Lake project proved that under certain conditions In Situ Combustion can generate large quantities of elemental hydrogen generation. They also recognized that if this process can be replicated and managed, it would have huge implications for world energy systems, and especially for Canada’s beleaguered Oil Sands.

In 2015 Professor Gates met with Grant Strem, CEO of the IconOil Group, a young Oil and Gas firm interested in innovative approaches and alternative energy. Together they decided to establish a new company, acquire test lands in Western Canada, and conduct a demonstration facility and a commercial pilot.